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Abstract

We develop an approximation and convergence theory for Galerkin approximations
to infinite dimensional operator Riccati differential equations formulated in the space of -

Hilbert-Schmidt operators on a separable Hilbert space. We-" the Riccati equation as

a nonlinear evolution equation with dynamics described by a nonlinear monotone pertur,

bation of a strongly coercive linear operator. U:@- a generic approximation result 'for

quasi-autonomous nonlinear evolution systems involving accretive operators which me then
use~to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximaiions to

the solution of the R iccati equation. 1Ve-i tl-trate the application of ou'resultsin the

context of a linear quadratic optimal control problem for a one dimensional heat equation. (
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1. Introduction

Recently a great deal of attention has been given to the analysis of, and the develop-

ment of approximation theory for, infinite dimensional operator Riccati differential equa-

tions. This is due in part to the role they play in the characterization of the closed-loop

feedback structure of the solution to linear-quadratic optimal control problems for dis-

tributcd p;iimter systems (see [10]). Working from Temam's [14], [15] formulation (see

also Barbu [3]) of a class of operator Riccati equations in the space of Hilbert-Schmidt op-

erators on a separable Hil ,ert space, we develop an approximation and convergence theory

for generic Galerkin type approximations. We make the usual assumption that our un-

derlying Hilbert space admits a densely, continuously, and compactly embedded subspace.

The only condition that we then require on our sequence of approximating Galerkin sub-

spaces is the usual one that the corresponding sequence of orthogonal projections converge

strongly to the identity in the stronger topology. We are able to obtain Hilbert-Schnidt

operator norm convergence of the approximating Riccati operators, uniformly in time on

compact time intervals.

Our effort here differs significantly from other recent treatments of the approximation

theory for infinite dimensional operator Riccati equations (see, for example, [G]) in that i)

we obtain Hilbert-Schmidt as opposed to strong operator convergence, and, more impor-

tantly, ii) our convergence theory is based directly upon, and involves only, the differential

equation itself rather than equivalent integral equations. Of course in order to do ,Ifti6

we must necessarily consider a somewhat more restrictive, but still sufficiently interesting

from an applications point of view, class of problems. For example we require that the
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linear part of the equation be strongly coercive on a space of Hilbert-Schmidt operators

and that the ndn-homogeneous or quasi autonomous perturbation (the state penalization

operator in the cdntext of the LQ control problem) be Hilbert-Schmidt. Our treatment

here is restricted to the quasi-autonomous or constant coefficient case. The temporally

inhomogeneous problem requires a different approach; our results for the time dependent

case will be reported elsewhere.

Our convergence theory is based upon a generic approximation result for nonlinear

quasi-autonomous evolution equations in Banach space with dynamics described by accre-

tive operators. In section 2 we prove a nonlinear analog of the well-known Trotter-Kato

theorem on the approximation of linear semigroups - i.e. stability (uniform dissipativity)

and consistency (strong operator convergence of the resolvent) yield convergence (see, for

example, [11]). The result that we prove here is closely related to similar approximation

results for nonlinear evolution systems which have appeared elsewhere in the literature (for

example, [4) and [8]). However the theorem we prove below is one that is most appropriate

for the particular class of problems that are of interest to us here. We follow Goldstein

[8] and give a proof using an idea originally suggested by Kisynski [9] for the linear case

wherein convergence is demonstrated via an application of an existence theorem to an

evolution equation in an appropriately constructed sequence space.

In section 3 we briefly outline Temam's [15] formualtion of the Riccati equation as a

well posed nonlinear evolution equation in the space of Hilbert-Schmidt operators. Our

0approximation and convergence theory is developed and presented in section 4. In section

5 we illustrate the application of our results in the context of a linear quadratic optimal
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control problem (i.e. the linear quadratic regulator problem) for a one dimensional heat

equation.

2. An Abstract Approximation Result for Nonlinear Evolution Equations

Let X0 be a real Banach space with norm denoted by I -o. Let X* be its dual and

let A0 X0 --* 2x 0 be an, in general, multi-valued nonlinear closed accretive operator (i.e.

{(x,y) x e Xo, y e Aox} is a closed subset ofX 0 xXo, and Ix 1 -x2o _< lxm+Ayl-(x 2 +Ay 2 )1o

for all A > 0, xi 6 Xo, and yj e Aoxi, i = 1,2) on Xo. Define the domain of Ao to be the set

Dom(Ao) = {x s Xo : Aox 6 (}, and the range of Ao to be the set 1T(Ao) = U Aox.

xeDom(Ao)

Since AO is accretive, it follows that for A > 0 the resolvent of Ao at A, Jo(A) = (I+AAo)- ',

is a well defined single-valued nonexpansive operator (i.e.fJo(A)y - Jo(A)y 2 0 IYI -Y210,

Yl,Y2 e Dom(Jo(A))) defined on Doni(Jo(A)) = 1Z(I + AAo). Suppose that T > 0, let

t -- fo(t) be an Xo - valued map defined on [0,T] and let x E Xo. We consider the initial

value problem in X0 given by

(2.1) xo(t) + Aoxo(t) D f0 (t), a.e. t r (0, T),

(2.2) xO(O) = x0.

We shall say that a function xo(') : [0, T] -- Xo is a strong solution to the initial value

problem (2.1), (2.2) if it is continuous on [0,T], Lipschitz on every compact subinterval of

(0,T), differentiable almost everywhere on (0,T), and satisfies (2.1) and (2.2). We shall

call x0 an integral .-olution of (2.1). (2.2) ;f it is continiious n 10,T1 ,at~ifics 12.2), and if

the inequality

Ixo(t) - S) < XO(s) X1+ < fo(r) - y, xo(r) - x >o dr
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holds for all x e Dom(Ao), y e Aox, and 0 < s < t < T where the pairing < *w>o:

X0 x Xo --+ R is given by< y,x >o= sup 1x*(v),x* f (Do(x)} with - o :Xo --+ 2xo denoting

the duality map on Xo (see [3]). A strong solution of (2.1), (2.2) is of course also an integral

solution. The following existence, uniqueness, anid regularity results are given by Barbu

[3].

Theorem 2.1 Let {X, Ij}1 be a real Baiiach space and suppose that A :X --+ 2X is a

closed accretive operator on X. Let C be a closed convex cone in X such that Doin(A) c C

and 1(I +AA) D C, A > 0. If x1 e Doin(A) and f f L, (0, T; X) wvith f(t) E C, a.e. t f (0, T),

then there exists a uniqiue integral solution \ to the initial value problem

(2.3) x(t) + Ax(t) D f(t), a.e. t e (0, T),

(2.4) x(0) = o

with x(t) E Doni(A) a.e. t f (0, T). Moreover, if y is the integral solution to (2.3), (2.4)

with f replaced by g c L, (0,T; X), then

Ix(t) -Y(t)1
2 < jX(s) _ y(S)12 + 2 < f(7) - g(r), x(7) - y(T) > d7

for 0 < s < t < T.

Theorerm 2.2 If in addition to the hypotheses and conditions of the previous theorem we

have xO E Dorn(A) and f F NV'"'(0, T;X). then the initial value problem (2.3), (2.4) has a

unique strong solution x with x e NN" -(0, T;X). \(t) E Doni(A) a.e. t e (o,T) and

[ i(t)I = Ax(t) + f(t)j < jAx0 + f(0)l + 2 jo jf'(s)jds, a.e. t e(0, T).
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Furthermore, if X and X* are uniformly convex, then x is everywhere differentiable from

the right and

d+x (t) (A(t)+f(tl0 , 0<t<T
dt

where (Ax(t) + f(t)) ° denotes the unique element of minimum norm in the set Ax(t) +

f(t).

Henceforth, we shall assume that there exists a closed convex cone Co C X0 for which

Dom(Ao) C Co and TR(I+ A0 ) D C0,A > 0, that x0, E Dom(AO) and that f0 E L,(0, T;XG)

with fo(t) c Co for a.e. t e (0, T). Consequently Theorem 2.1 applies and we are guaranteed

that the initial value problem in X0, (2.1), (2.2), admits a unique integral solution.

We prove an approximation result in the spirit of the well known Trotter-Kato theorem

for the approximation of linear semigroups (see, for example, [11]), and the approximation

theorems given by Crandall and Pazy [41 and Goldstein [8] in a nonlinear setting. Although

the convergence theorem we shall prove here does not differ significantly from the ones given

in [4] and [8], the latter results are stated inappropriately and are somewhat too restrictive

for the application we intend to consider below. Following Goldstein [8], the proof we shall

give here is based upon an idea first suggested by Kisynski [9] in the context of linear 0

semigroup approximaton. We argue convergence via an application of the existence and

uniqueness result, Theorem 2.1.

For each n = 1,2,... let X, be a closed linear subspace of X 0, and let A, : Xn -+ 2 Xn be

a closed accretive operator on Xn. As was the case above with A0 , for A > 0 the resolvent

of An, J.,(A) = (I + AA, )-1 is a well defined, single-valued, nonexpansive operator defined

on Dom(J,(A)) = 1(I + AA,, ). We assume that there exists a closed convex cone C,, in X,,



for which Dom(A, ) C C. and 1R(I + AA,,) D C, A > 0. We assume further that for each

n = 1,2,... ,x is an element in Dora(A,,) and that f,, is a function in LI(0, T; X,,) with

fn(t) e C for almost every t e (0, T). It then follows that Theorem 2.1 implies that the

initial value problem in X, giver, by

(2.5) x,(t) + A.x,(t) E f,(t), a.e. t f (0, T),

(2.6) X1n(0) =.

admits a unique integral solution x,, C(0, T; X,,).

In our discussions below, we shall use the notation lim Dn D Do where D,, C Xn, and
n 0O

Do C X0. By this we shall mean that for each zo c Do there exists a sequence {zi1=l with

z' f D, and lim Zn = z0 . Our fundamental approximation and convergence result is given
n-O

in the following theorem.

Theorem 2.3 Suppose

(i) lim C, D Co
n-oO

(ii) lim f,(t) = f0 (t) and there exists a g E LI(0, T) for which If,(t)I < g(t), n 1,2,...,
n -o

for almost every t e (0, T)

(iii) ln - Xo =X0

(iv) lim Jn(A)yn = JO(A)yo for each A > 0 whenever YN e Cn and limn-ooyn = Yo E Co.

Then lim x, = x0 in C(0, T; X 0 ) where x,, for n = 1,2,... and x0 are the unique integral
n - oo

solutiors to the initial value problems (2.5), (2.6) and (2.1), (2.2) respectively.

Proof: If we define the linear space X over the rcals by

X = {U = {un }n=O : Un f X',n = 0,1,2,.. lir u,, uo}



and for u = fUn°_0 f X set Jul = sup u.Jo, then {X, I1 is a real Banach space. Let C
II

be the closed convex cone in X given by C = {u = {un}1= 0 c X : u. f C,n = 0. 1,2..)

Note that if Co 4 0, hypothesis (i) implies that C 4 p. Define the operator A : X --+ 2x by

{v = ) ' E: VI .un,Au = n = 0, 1, 2, ..., lim,, t,, = V0}, u I un 1' 0 e Dom(A)
O1 u Dom(oAA)

Dom(A) = {u = {un}.=o f X E Dom(AXu ii =0,1, .... and for each n 2,...

there exists a vn e A,,u for which lirn vn = v0 E AOu0}.
11 -c

The operators An being closed and accretive implies that the operator A is closed and

accretive as well. Indeed, for example, for A > 0, ui 6 Dom(A), i = 1, 2, and vi c Au', i = 1, 2,

we have

I - U21 = SUP ul U2- Un10 < sup Iul + Av, - (u' + AV)o= Jul + Av1 
- (u 2 + AV2)1.

n 11

The fact that A is closed can be argued analogously.

Clearly Dom(A) C C and it also follows that for A > 0 1Z(I + AA) E C. To see this let

A > 0 and let v ={vn}l=o e C. Then vn e C. and Cn C 1Z(I + AAn), n = 0, 1,2,... imply

that we may define Un = J,,(A)vn, n = 0,1,2,., and set u = full1=0. Now v E C C X and

hypothesis (iv) yield lim u, = lir J1 (A)v,, = JO(A)vO = u0; thus u f X. Also, if we set

wn = (vn-Un)/A, n = 0,1,2,.. then w = {wn}n(o cX, w, E A,,ld and lirn w=W 0 c A0 uo.
n-CO

It follows that un f Dom(A1 ) and therefore that u E Dom(A) with w e Au and v f (I+ AA)u.

We conclude that v E T?(I + AA) and therefore that C C 1Z(I + AA).

Define z° = {xn}=0. Then hypothesis (iii) implies that z E X. Moreover, using (iv)

it can be shown that Dom(A) = {u = {u,,},= e X : un E Dom(An),n = 0,1,2,...}. Thus

z E Dom(A). If we define the function fby f(t) - {f,,(t)}' 0 for almost every t C (0, T), then

hypothesis (ii) implies that f F L1 (0, T; X), and f,,(t) c C,,, n = 0,1,2.... a.e. t c (0, T) implies
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that f(t) c C, a.e. t c (0, T). It follows from the auguients given above and Theorem 2.1

that the initial value problem in X

z + Az(t) 3 f(t), a.e. t f (0, T)

z(0) == zo

admits a unique integral solution z E C(0, T;X) with z(t) f Dom(A) for almost every

t c (0, T). In addition, inspection of the proof of Theorem III. 2.1 given in [3] (paying

particular attention to how solutions are actually constructed) reveals that we must have

z(t) = {x.(t)}) 0 where for n = 1,2, ..., x. is the unique integral solution to the ini-

tial value problem (2.5), (2.6) in Xn and xo is the unique integral solution to the initial

value problem (2.1), (2.2) in Xo. Consequently, since z(t) e X, t f [0, T], it follows that

lim x(t) = xo(t) for each t e [0, T].
fl-00

Finally, that the convergence of xn(t) to x0 (t) is in fact uniform in t for t E [0, T] can

be argued as it was done by Goldstein in [8]. Let f > 0 and t c [0, T] be given. Then

z = x 0 E C(0,T;X) implies that Iz(t) - z(s)l < e/3 for all 0 < s < T with It - sI <

26 = 26(c). Now lim xn(s) = xo(s) for each s f [0, T] implies that Ixn(s) - xo(s)o < e/3
nl oo

for all n > N, = N(s, c). Thus

Ix(t) - xo(t)Io < Ixn(t) - Xn(s)l0 + Ixn(s) - x0(s)[0 +IXo(S) - xO(t)10 < E,

for all 0 < s < T with It - si < 26 alid n > N. Let k be the greatest integer less than or

equal to T/6 and set N = max{No,N 6 ,N 26 , ... Nk6 ,NTI. Then Ix, 1(t) -xo(t)o < E for all

n > N = N(e) and the proof of the theorem is complete.
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3. Operator Riccati Equations on Spaces of Hilbert-Schmidt Operators

In this section we briefly review and outline Temam's [15] results onl operator Riccati

equations set in the Hilbert space of Schmlidt class operators on a separable Hilbert space.

Let H be a real separable Hilbert space with inner product and associated induccd norm

denoted by (.,.) and " I respectively. Let V be another real separable Hilbert space

with inner product < .,- > and induced norm "j We assume that V is densely and

continuously embedded in H (i.e. V = H, and there exists a 1)ositive constant /I for which 0

K9pj _< p1j0jp c V). Identifying H with its dual, H*, we have V -- H = H* -+ V* with

the embedding of H* in V* being dense and continuous as well. Denote the usual operator

norm on V* by .1.. Let 7 denote the canonical isomorphism (Riesz map) from V onto

V*. Then for ,, 6 V we have

( 0 =< p,,> 0

where (.,.) in the above expression denotes the usual extension of the H inner product to

the duality pairing between V* and V. We assume further that the embedding of V into

H is compact. It then follows that -Iy- c £(V,V*) f £(H,V) and that -y-l is self-adjoint,

positive, and compact as a mapping from H into H. We note that V* is in fact a Hilbert

space with inner product < , >* given by

< V'V', >.--< ,- , - ' > = '- ,, ' V*.

We have that 11(P1. = V< -TP >*. P f V*.

Since y-' is self-adjoint, positive, and compact on H there exists an orthonormal basis,

{ek} k 1 , for H such that ,-lyek = p-2ek, k = 1,2.... for some real numbers Pk, k = 1,2

Consequently {p- ekl1c 1 and {pkek1 I= are orthonorinal bases for V and V* respectively.
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For separable Hilbert spaces X and Y, let HS(X,Y) denote the Hilbert space of Hilbert-

Schmidt operators from X into Y. Denote the corresponding inner product and induced

norm by [., "]HS(x,Y) and I-IHS(x,Y) respectively. Set 'h = HS(H, H) with

[4',r]- [1 :(4ek,Pek),
k=1

and I161i = 14?I.s(.,i) = V[, 4] , TI E 'H. Define the Hilbert space V by V

HS(V', H) n HS(H,V) with inner product

[b, 'Iv = [4P, 'PfS(V-,H) + [, I.IS(I,V) = P fk(4 e.,,k) + 1 < 4?e,, Pe,, >,
k=1 k=1

Iv = [4?, P]v , Ir E V. It is not difficult to show that the dense and continuous

inclusions HS(V*,H) C HS(H,H) C HS(V,H), and HS(H,V) C HS(H,H) C HS(H,V*)

hold. Also, it can be argued that HS(V*,H) and HS(V,H), and HS(H,V) and HS(H,V*) -

are dual pairs with respect to the duality pairing

[,r,,= Z(4?e, ce,).
k=1

It follows that V" = HS(V, H) + HS(H, V*) and, identifying 7- with its dual "*, that

V -+h -- * V", with the inclusions dense and continuous.

Let a(-,-) : V x V -- R be a bounded strongly V-elliptic bilinear form on V x

V. That is, there exist constants 0.,3 > 0 for which a(, a) _ l,,Ilj and la(,p, ")I <

/311,1111011, p, ' E V. (With minor modification our theory continues to hold if the form

a(.,-) satisfies the coercive inequality a(p, p) + AjI:j2 > 0'11"q 2, p e V, for some A c R.

To keep our presentation here as simple as possible, however, in our discussions below we

shall treat only the case A = 0.) Let A c C(V,V*) be the operator defined by (A6, )

10
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a(0, u'), , F V. Let a*(.,.) V x V --+ R be the form which is adjoint to a(.,); that is

a*(¢, ') = a(V',, ), , e V. Then a*(y,p) a1ll.j 2 ard ja*(p,,)l < /JKIlII9II, q, ' € v.

Let A E C(V,V*) be the operator defined by (A*p,,) a*( pg,) = a(g', ), , E V.

Let Co be the closed convex cone in -i given by Co {4) e HS(H,H) : D = 4O*, i 0}.

Let T > 0 and suppose that IT' e Co and that F0 e L 1 (0, T;H) with Fo(t) e Co for almost

every t E (0, T) are given. Let tb -+ .F0(b) be a single valued map defined for each (P c Co

with range in R which is continuous from - into itself. Assume further that o has the

property that

> 0,

for all 4, T c Co. WVe note that if z --. Fo(z) is a single valued complex function of the

complex variable z with To(O) = 0 and which is analytic on the nonnegative real axis, then

the mapping P --+ 70 (D) satisfies YT0 (d) f - for all 4 E Co and is continuous from I-t into

R"t (see Dunford and Schwartz [5], Theorem XI.6.7.7). We seek a solution n1o to the initial

value problem

(3.1) fto(t) + A*io(t) + rIo(t)A +.Fo(Io(t)) =Fo(t), a.e. t c (0, T)

(3.2) r 0 (0) = i0

with ri 0 (t) e Co. a.e. t e (0, T).

Note that when , 0 (-() = 42 (3.1) becomes the standard quadratic Riccati equation.

Elementary properties of Hilbert-Schnidt operators (see [14]) can be used to argue that

for D, q/ e Co we have

[D2 _ 2 _ q]n = [p(,D _ T) ¢ _ qpH + [(¢ _ I)q,, _ p- . _> 0.

Essentially the same argument can be used for the case of -Fo(() V , where n is any

11



positive integer. Foi more general quadratic terms, for examl)le, the one that results in

the case of the linear-quadratic optimal control problem, .F0(P) = with M e £(H),

M = M*, and N > 0, once again a similar argument will work so long as CM > 0. -I f Co

(see Proposition 2.2 in [15]). This will of course be true if (IM = MN for all P f Co

Remark 3.1 At this point a comment regarding the relationship between the operator

A* and the adjoint of A is in order. Define the operator A : Dom(A) C H -- H to

be the restriction of the operator A to the set Dora(A) = {O e V : .A, f H}. It can

be shown (see [12]) that Dom(A) = H and consequently that A admits an H-adjoint,

A* : Dora(A*) C H -- H. The operator A* is the extension of A* to an operator defined

on all of V or, equivalendy, A* is the restriction of A* to the H-dense subset Dom(A*) =

{ e V : A*p e H}. We note also that -A is the infinitesimal generator of a uniformly

exponentially stable semigroup, {T(t) : t > 0}, of bounded linear operators on H. Similarly,

-A* is the infinitesimal generator of the adjoint semigroup {T(t)* : t > 0} on H. In

addition, it can be argued that both of these semigroups admit respectively restrictions

and extensions to analytic semigroups on V and V* (see [1], [13]).

An appropriate refomulation of (3.1), (3.2) will allow an application Theorems 2.1 and

2.2. Define the operator L0 e£(V. W) by L0  = A*4 + 4DA. for (D E V. It is not difficult

to argue that L0 is strongly V - elliptic- that is, there exists a constant ,w > 0 for which

(3.3) [Lo C ,(I]7> -H~ l J,b 11 2 D6V,

and therefore that the set Doma(LO) = 14E 4 V; L0o E 7-R} is dense in R" (see [13]). Define

12
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the operator A0 : Dom(Ao) C 'H - 'H by

Aob = Lo- + .Fo(4), f Don(Ao) =Dorn(Lo) n Co.

It follows that A0 is a closed operator on ?i and that it is strongly V - monotone. That is,

for 4,I' TE Dom(Ao) we have

=L(-),p] +[Yro(.,) _Fo(,p),. -'i, _ p W -'Fjjb_ 11[AA - Ao T,, (k - kP]w = [L0(41 - %P), 41 - V. .o¢ T() '- ] > '[ ,- I

From this it can be argued at once that A0 is accretive on its domain and that R7(I+ XA0 ) D

Co for all \ > 0.

We rewrite (3.1), (3.2) as the initial value problem in 71- given by

(3.4) fIo(t) + AoIo(t) = Fo(t), a.e. t f (0, T)

(3.5) 0(0) = no0

Now Dom(Ao) = Dom(Lo)nCo = Co and recall that it was assumed that r1° e Co. Also

it was assumed that F0 e LI(O, T; 7) with F0 (t) f Co, a.e. t e (0, T). Consequently Theorem

2.1 yields the existence of a unique integral solution 110 to the initial value problem (3.1),

(3.2) with Ilo(t) e Co for almost every t - (0, T). If it is further assumed that 11' f Dom(Ao)

(i.e. that 11o E Co and that A*Hg0 + I1A f HS(H,H)) and that F0 6 NV1'"(0, T; H) with

F0 (t) E Co, a.e. t e (0, T), then Theorem 2.2 implies the existence of unique strong solution

H0 e WV''(0, T; H) with A*IIo(t)+Ilo(t)A e HS(H,H), a.e. t e (0, T). Using density it can

be argued further that if I ° E Co and Fo f L2 (0, T; V*) vith Fo(t)* = Fo(t), Fo(t) 0, a.e.

t E (0, T), then there exists a unique solution Io E L2 (0, T: )n C(O. T; R) n Hi(0, T; V*)

with IHo(t) e Co for every t c [0, T] (of course in this setting, N1o is a solution of (3.4), (3.5)

in a distributional or V* sense).

13
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4. Approximation Theory

For each n = 1,2.... let H, be a finite dimensional subspace of H with Hn C V for all

n. Let P. : H --* Hn denote the orthogonal projection of H onto Hn with respect to the

standard inner product, (-, .), on H. We shall require the assumption that

(4.1) hm tIP.lo- = o, V.

Note that (4.1) implies that lir JP,,; - pj = 0, c e H and that Pn is uniformly

bounded in n in both £(H) and £(V) with respect to the uniform operator topologies.

It will be necessary for us to define an extension of the operator Pn to a bounded

operator from V* into V*. We do this as follows. For o E V* define Pn(P E H, to be the

representer in Hn of the functional o restricted to a functional on Hn. That is Pnlp = (Pn

where ,n is the unique element in Hn (guaranteed to exist by the Riesz representation

theorem applied to the Hilbert space {H, (', )I) which satisfies (p, On) = (O, On), On f Hn.

Since Hn C V C V*, Pn can be considered to be a linear map of V* into itself. Indeed

Pfl = (, is the continuous linear functional on V given by (Pf , 0) = (on, 0), 0 E V.

The definition of the orthogonal projection of (p c H onto Hn, (Pnfl - 1P, On) = 0, 0,, e H,

reveals that we have in fact defined an extension of P, to an operator on V* with range

Hn considered as a subspace of V*. Using the fact that for , e V* and t#, f V we have

(Pn,,') = (PiP,t ) - (Pfl(. ' - P,) = (Pfl ,Pn) = (p,Pfln'), and that the Pn are

uniformly bounded in £(V). it is not difficult to show that the P, are uniformly bounded in

£(V*). It is worth noting that the extension of P,, defined above agrees with the operator

that would be obtained if we were to extend Pn in the usual way by considering it as a

bounded operator defined on the dense subset H of the Banach space V*.

14



It follows from assumption (4.1) that lim IIPn - = 0, p f V*. Indeed, for

E H we have IIP,, -,) jPn,; -.-- --+ 0 as n -o c. Since H is dense in V*, and

the P. are uniformly bounded in 1(V*), it follows that I[Pv - [[. -- 0 as n - oc for

o f V*. For (p, 0 e V*, we have

< P.;,a, >- = (Pn',"-OF') = (P,P"Y7- ' ) = (p,-lP ') = < VYPnY-1 >*

Thus P* e C(V*), the adjoint of Pn considered as a bounded operator on V*, is given by

P* = -Pn-' - 1 . Assumption (4.1) yields

IIP.* - Ill* = II- P o-'( ll = II-'YP.Y--'pII = IIPn'7 1- 7-1I- 0

as n --* oc, for each V e V*.

For each n = 1,2,... define the finite dimensional subspace "hn of Ih by

R- n C= {' Pn : ',, e L(Hn)}

Note that 7hn is clearly a subspace of both 7H and V since Hn finite dimensional implies

that all operators in RHn are of finite rank. Define the closed convex cone Cn C R., by

Cn = {PnPn En :4)n = (*,, n > 0}. Using the fact that 7in C V and C,' C Co, we

define the operator An : Dom(An) C Rn -+ "Hn by

(4.2) An(-nP,,) = {Ao(CInPn)1. n',Pn E Dom(A,,) = C,.

That is A,,((DnPn) is the element A0 (4nPn) in V* restricted to a linear functional on ",n.

Since "h, is a finite dimensional Hilbert space, the Riesz representation theorem implies

that A,(',P,) = %,,P, E H,, where TnPn is the unique element in 'Kn which satisfies

[Ao(' nPn), OnP.,H = [OnP,,, O,,P,,nI, OnP,, EH,,.

15



The operators An defined in (4.2) are in effect the standard Galerkin approximation to

A0 . Furthermore, the definition (4.2) leads to the same approximation to A0 that would

be obtained via the more conventional procedure wherein the operator A in the definition

of L0 is replaced by its Galerkin approximation. Indeed, for each n = 1,2,... define

the operator . E C(Hn) by Anqpp1 = -Ap.nIHy, n E Hn. That is, Ano = V'n where

Vyn is that element in H, (once again whose existence and uniqueness is guaranteed by

the Riesz representation theorem) which satisfies (A .,O.) = (On,9A), On f Hn. Noting

that since P. is the orthogonal projection of H onto Hn, it is not difficult to argue that

[,kPn, On]W = [D, 0n]W for all ciP E V* and O E "Hn, it then follows that for 4DPn and

PnP, 1e Rn we have

[An('.Pn),0P.PnlW = [Ao(IP.),T'nPn].. = [A0(InPn)P , TnP]7,]

= [A*4nP, + 'DPnAP,+.T0(t, Pn)Pn,,nP,]W

00

= , {(A*(InPnek,%''nPek) + (4i'nPAPek,T.I'1,Pek) + (.o(F'0nP)Pnek, 'I',Pek)}
k=1

= E -{(A*IPek, x'nPnek) + (APnek, 4*'TnPnek) + (P.0 O(bPnP)Pnek, nPnek)1
k=1

00

= + ( + +

or

A(4DP) = {.A CIn + -1 ,-4n + -("PPn)}Pn,

where .Fn(41) = Pn-'o(D), 41 e Co. In particular when .o(-i) t 2, we have A.'(4.P.')=

{A* I), + t,A,, + ( p 21p.

For each n = 1,2,... define II' E Cn by I1' = Pn10Pn and Fn e LI(0,T;lh) by _

F,(t) = PnFo(t)Pn, for almost every t c (0,T). We consider the problem of finding a

16
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solution II. to the initial value problem in -4. given by

(4.3) In(t) + AnLn(t) = Fn(t), a.e. t c (0, T)

(4.4) 11.(0) = 110.

with II.(t) e C, for almost every t e (0, T). The definition of the operator An together with

the properties of the operator A0 yield that for each n = 1,2,... An is closed and strongly

V - monotone on its domain. Hence A. is accretive with 1Z(I + AA.) D C, for all A > 0.

Since Dom(A,) = C = Cn,r ° E Cn, and F, E LI(0,T;7-.) with Fn(t) E Cn for almost

every t f (0,T), Theorem 2.1 yields the existence of a unque integral solution Hn, to the

initial value problem (4.3), (4.4) with fl1 (t) f Ca, a.e. t e (0, T).

We shall argue the convergence of II. to HO as n --- oo in C(0, T; 71) (i.e. the Hilbert

Schmidt norm convergence of IIn(t) to Ho(t), uniformly in t for t E [0, T]) via an application

of Theorem 2.3. In order to do this we shall require some preliminary lemmas. The first

lemma below is a technical lemma which can also be found in [7]. For completeness we

state it here and have included its rather brief proof. 0

Lemma 4.1 If {ajil' is an absolutely summable sequence of real numbers, then there

exist sequences {bi} 1 and {ci} i such that lim bi = 0, {ci}) 1 is absolutely summable,
i-- o

andai = bici, i= 1,2,...

cc

Proof: Let a - laid and for j = 0,1,2,.. define the nonnegative integers kj as follows.
i=1

Let k0 = 0 and let k1j denote the first index for which

kjE

ai > a - j= 1,2.

17
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Set bi = 1/j and ci = jai, for i = ki-1 + 1,...,k, j = 1,2,.... Then bici =ai,
"0 0 0 kj 00

i = 1,2, ...,.lim bi = 0, and E IciL = E j laki + E < 00
1 00 i=1 j=1 k=kj-,+l j=1

Lemma 4.2 Let X and Y be real separable Hilbert spaces with inner products denoted by

< -," >x and < -,. >y, respectively. If (, E HS(X,Y) then P can be factored as 4 = I "2

with -V F £(Y) compact and 2 c HS(X,Y).

Proof- Let {x,}x l and {y,} 1 be orthonormal bases for X and Y respectively. Since

eP e HS(X, Y) it has a representation in the form of an infinitie matrix 4P -+ ["j] = [<

00 00 
00

Yi, xj >y] with o? < oo. For i = 1,2,... set ai = E . Since the sequence
i=1 j~1 j=1

{a, }__ is absolutely summable, we can apply Lemma 4.1 and obtain sequences {bi}_-

0 
00

and {ci}iO1 for which a = bci,i = 1,2,.....limbi = 0, and Zci = cI <
i--00~ =

oo. Define V e C(Y) and 2 f C(X,Y) by 4'y = v < Y,y, >k, Yi, Y E , and
i=l

00 00

E E < x, xj >x yi, xE X. Then 41V = D, and since lim V/ = 0
i=1 j=1 i-00

0 00 00 00
and -E r- E = Z E E ci < so, it follows that 4' is compact and

i~j i=1 j= i=l i=l

2 f HS(X,Y).

Lemma 4.3

(a) liM IP, Pn - = 0, "D -.

(b) liM IIPn(Pn - 1v1V 0, 4P V.

Proof- (a). We consider P to be an element in 1(H). Then for b c = HS(H, H) we

have

IP.(IP,, - CI 5 IP_ Pn -- Pnf[7  + 1P,(1 - ID]w

18
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I'I:'PD - H + ]P, ¢ - -111-H

111*171~I + IPA- (bl-
= I(¢P)*-*, + IP¢-¢4n

=P 41*1-7I1- + jP,¢ - ¢n.

Since ¢,¢* e HS(H,H), we can apply Lemma 4.2 with X = Y = H to obtain I = ¢D¢I(D

and ¢* = (¢.*)1(¢*)2 with ¢V,(¢V)' e £(H) compact and ¢2,(¢*)2 f HS(H,H). Then

jP.¢-¢ p = -(
p " _ I)¢'¢ 2IHS(HH) 1-(P. - 1)¢ IIr(H) I IHS(HH-"

The fact that P,, converges strongly to the identity on H and that ¢0 E C(H) is compact

imply Pn¢ - ¢DI --+ 0 as n - no. Similar estimates for IP,,I* - ¢*IH yield the desired

result.

(b). Let ¢1 c V = HS(V*,H) nl HS(H,V) and consider IIPn¢Pn - 'IIHs(v-,H).

Since IPn I = 1 it follows that

IIPlb¢Pn - IIHS(V.,H) _ IIP.¢Pn - PA¢IIHs(v-,H) + IjjPn¢ - ¢IIHS(V-,H)

-IIPn - IIHS(V,H) + [(PA¢ - ¢(fHS(V.,H).

Now ¢' e HS(V*,H) implies that * E HS(H,V*) and that (¢Pn)* = P*¢* f HS(H,V*)

where P* denotes the adjoint of P. as an element of £(V*). Then

(4.5) IIP¢n'I - ¢IIHS(V-,H) !5 IIP *, - ¢*IIHS(HV-) + IIPA - ¢IIHS(V-,H).

An applicaiton of Lemma 4.2 with X = H and Y = V* and the strong convergence of P,

to the identity on V* yield that the first term on the right hand side of the estimate (4.5)

above tends to zero as n --* oo. Similarly, Lemma 4.2 with X = V* and Y = H and the

strong convergence of Pn to the identity on H implies that the second term tends to zero as

n --+ oo as well. A similar argument can be used to show that IIP.¢Pn - ¢IIHS(Hv) - 0

as n --* oo and the lemma is proved.
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Theorem 4.1 If I1 0 e C(0, T; 'H) is the unique integral solution to the initial value problem

(3.1), (3.2) (or, equivalently, (3.4), (3.5)) and II. e C(0,T;Hn) is the unique integral

solution to the initial value problem (4.3), (4.4), then fI, converges to 1o in C(0, T; H) as

n --+ oo. That is, lir III(t) - Ilo(t). = 0 with the convergence uniform in t for t c [0, T].p n -o

Proof The desired result will follow immediately from Theorem 2.3 once we have verified

that the hypotheses (i)-(iv) given in the statement of that theorem hold. If o0 f CO then

4% = Pn4oPn e C and Lemma 4.3 implies that lir 1'( - 4001W = 0. Thus lir Cn D
n-clo n-co

Co. Lemma 4.3 also implies that lim IF.(t) - Fo(t), = lim IPnFo(t)Pn - FolH = 0
n-co nt00

for almost every t e (C, T). Properties of Hilbert-Schmidt operators and the fact that Pn is

an orthogonal projection yield IFn(t)In = IPnFo(t)PnI-H IFo(t)I e L 1(0,T), for a.e.

t e (0, T). Consequently hypothesis (ii) is satisfied. Once again from Lemma 4.3 we obtain

lim II1 - IIl0 = lir IP,,I°Pn - 1I°] = 0. The verification of hypothesis (iv) is all
n-oo n-coo

that remains.

Let A > 0 and let (, f Cn, n = 0,1,2,... with lir IDOn-1)o = 0. Set 'k n = Jn(A'i%,
n-oo

n = 0,1,2,... where Jn(A) = (I + AA,) - '. Then recalling (3.3) we have

Aw I[IQ1n - Pn PoPo112 < A [Lo{fPn - Pn'I'oPii}, T. - Pn I'oPn5N

[(I + AAn),'n - (I + AAo)%oPn, n - Pn'I'0Pn].H - ['' - '1oPn, In - Pnq'IoPn]N

+A [Lo{ 'Fo - PnI'oPn}, %n - Pn 'IoPn]N - A[Fn(I'n)Pn - .'o('Iio)P., Tn - Pn PNJ]

- [4 - PnPoPn, In - Pn'I'oP,]1 - [Rn - Pn'oP., T. Pnq'oP]7j

+A [Lo{ 'Po - PnoPn}Pn, 'P - Pn IoPn] - A[Fo(qln)Pn - F 0 (Pn I 0 Pn)Pn,

%kn - Pn0I'oPn] + A .Fo('o)Pn -- 0(P.\Pn)Pn, 4n - P.oPn]
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[D - P.I(oP,,T. - P.TIoP,j + A [Lo{ITO - P ,%PP}P 1 ,, -~ -. o ,

+A I-F0(OPT - 'FO(P-'PP)P-, "P- - POP1 I

ll'. - P.-4DOP.IIV. HlIPn - Pn'FPnllyI + A llLo{'Io - Pn'I'PON}lIy.

HIP.' - Pn"Pn liJv + A ll.Fo(TI')P 1 - .Fo(P.TI'P.)PllV. lkI'n - Pn'I'oPnllI.

where in the above estimiate we have used the facts that [Y0O(') - -770(P.TIOP.)P.,''n

PnTOPn] : 0 and Pn nonnegative seif-adjoint and compact (being of finite rank) imply

[''~')n- .F0 (Pn4!OPI)P.,, P.T~j - 0. Thus

HIP.jr - P.%POPhIV -L j4'~n -nP

+(lw){IiA*tlc(v,v.) IPIC(H) + IIAIYc(v,v*) IPUIC(v)ljhl'- Png'PnIV

+± 1.77(910) - F(Pn'OPn)tW

for some positive constant k. Now

14-- PA 0 ~p4,,Y 5 1" - (DOJ' + JRO -. 'O-

and

IIA*Ilfc(V,V.) IPnIC(H) + IIAIIC(v,v.) IpnIc(V 0 1(1 + Ipnlcv)

which is uniformly bounded in n. The assumption that lim 4) = PO Lemnma 4.3, and

lim ITO - P.'IPOPnl'H = 0 together with the continuity of the map 0 --+ FO(O) from R-
n -0

into itself yield lim 11 I,, - P,'I'%PP,, =1 0. Consequently the estimnate
fl-oc

lim On'r - %FIoW K 1K lim II'In - 'IoIfV

< xK lim !jq'I'- PnW/OPnljy + XK linm IPn'I'OPn - TOHfV
n-00 n-oo

together with Lemma 4.3 yield the desired result.
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Remark 4.1 Although we are unable to demonstrate that the hypotheses of the existence

result, Theorem 2.1, are satisfied when the initial value problem (3.4), (3.5) is considered

in the space V, we can show that hypotheses (i)-(iv) of Theorem 2.3 are in fact satisfied

in the stronger V - topology. More precisely if fI ° E V and F0 f L1 (0, T; V), then Lemma

4.3 is sufficient to obtain the convergence of II. to DO in C(0, T; V). In the case of a linear

dynamical system (i.e. when A0  £(V, V*)) it is in fact possible to apply Theorem 2.1 in

the space V and therefore obtain a complete approximation theory in V (see [1]).

5. An Example

We illustrate the application of our approximation results with a linear-quadratic

optimal control problem (see [101) involving a one dimensional heat equation (exten-

sion to higher dimensions is straightforward). Let H = L 2(0, 1) endcwed with the usual
1

inner product,(p, ) -- f (r)(7)dq. Consider the optimal control problem of finding
0

i E L2((O, T) x (0, 1)) which minimizes the quadratic performance index

T

J(u) = (Qx(T, .), x(T, .)) + I (Qx(t, ), x(t, .)) + r(u(t, .),u(t, .))dt

0

subject to the linear distributed dynamical system

(5.1) 2-(t, 11) -9 a(,7) '9'(t, 77) = bu(t, q), t > 0, 0 < 72< 1,

(5.2) x(t,0) = 0, x(t, 1) = 0, t>0

(5.3) x(0, 7) = x°(7), 0 < < 1,

where a E L (0,1) with a(71) _ a > 0, a.e. il f (0,1), b,r e R with r > 0, x0 c L2 (0,1),

g, Q e Co - c HS(L 2(0, 1), L2(0, 1)), P = ci,*, > 0} Note that 9. Q e Co implies
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I 1

that (9,p)(Y/) = fg(,)()d and (Q)(I) = f q(rj, )p()d with g,q E L2 ((0, 1)X(O,1)),
0 0

g(7,)= g( ,,1), g(77,) 0, q(7,) = ) q(q, ) 0, a.e. (ia) e (0,1) x (0,1).

If we set V = H1(0, 1) endowed with the usual innei product, < 0'p, '>

f Dp(rj)D'(il)d,, and corresponding induced norm, I then V* = H- 1 (0, 1). Define
0

the operator A E C(V,V*) by (A )(zi') = (aDp,DQ), p, , f V. Then (A,) _

aIlp 112, e V and the restriction A of the operator A to the set Dora(A) = {v9 E V

Ai e H) (= H2 (0, 1) l Hi,(0, 1) when a is sufficiently smooth) is positive, self-adjoint and

the infinitesimal generator of a uniformly exponentially stable analytic (parabolic) semi-

group of bounded, self-adjoint linear operators {T(t) : t > 0} on H. Let U = L2 (0, 1)

and define the operator 3 e £(U,H) by (Bv)(71 ) = bv(r/), v e U,0 < q; < 1, and define

1Z E C(U) by (Rv)(77) = rv(i), v c U,0 < 1< 1.

The solution to the initial value problem (5.1) - (5.3) is given by

t

X(t,.) =T(t)x ° + J T(t - s)Bu(s)ds, t > 0.

0

where for u e L2 ((0, T) x (0, 1)) we have used the shorthand notation t -- u(t) to denote

the function t --* u(t, -) e L 2 (0, T; U). The solution to the optimal control problem is given

0
in closed-loop, linear state feedback form (see [10]) by

(5.4) U(t) = -TZ-B*lIo(T - t)x(t,. =-(b/r)Io(T - t)x(t. ), a.e. t E (0, T),

where H0 is the nonnegative self-adjoint solution to the Riccati differential equation initial

value problem

(5.z) ft 0 (t) + All 0 (t) + I 0(t)A + IIo(t)8'TZ-78*lIo(t)= Q a.e. t e (0, T)
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(5.6) 110(0) =

If we set Ml = BIT-L3 * = (b 2/r)I e £(H), then M = *, M > 0 and, since PM =

N14, f Co, 1,M > 0, c f Co. Thus Temam's [15] theory (with Fo(t) Q, t f [0,T],

.'0(Io) = (b 2 /r)1 2 , and 1I' = ) presented in section 3 above yields the existence

of a unique integral solution 1I0 e C(O,T;HS(H,H)) to the initial value problem (5.5),

(5.6) with [10 f L2(0,T; HS(H,V) n HS(V*,H)), fI0 e L 2(0, T;HS(H,V*) + HS(V,H))

and Ilo(t) E Co, t e [0,TI. (If 9 is such that A9 + 9A e HS(H,H) - for example

if g = 0 - then 110 will be a strong solution with fl0 E W"' (0,T;HS(H,H))). Since

= HS(L 2(0, 1)), L2 (0, 1)) is isometrically isomorphic to L2 ((0, 1) x (0, 1)), it follows that

there exists a 7to E C(O, T; L 2((0, 1) x (0,1))) with iro(t,rq, ) = w'o(t; ,r7), 7r0(t,7i, ) >

0. a.e. (q ) E (0, 1) x (0. 1),t f [0, T] such that the solution to the optimal control problem,

(5.4), is given by

U~~t b 71 7r0(T - t; il, )x(t, )d ,
= -7

0

for almost every (t, q) e (0, T) x (0,1).

We consider a linear spline based approximaton scheme. For each n = 2,3,... let

Hn = span {p 1} - where for j = 1,2,...,n-1, (pJn is -he jtli linear spline ("hat") function

on [0,1] defined with respect to the uniform mesh {0, 1/n, 2/n, ..., 11. That is
0 0< 1< J- 1

(0
f1-jl L< +1 <

0 +- 71

Let P,1 H -* H,, denote the orthogonal projection of H onto H,, with respect to the

. .inner product and define A ,, f £(H,,) to be the Galerkin approximation to A. More
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precisely, we set Anpn --= 4 'n, Yn, Qn 6 Hn, where Q'-" is the unique element in Hn which

satisfies (Ap,,9 O) = (i, On) , On H. Let Qn = P 1 Q f L(Hn) and 9n = PgE CH)

Using the properties of interpolatory splines and density arguments it is not difficult to

show that li rn P~ - A~I = 0, cp e H1(0, 1) = V and consequently that the assumption
11-o0

(4.1) is satisfied. It follows therefore, that the approximation theory developed in section

4 yields that the solution Hln to the finite dimensional Riccati differential equation initial

-alue problem

(5.7) ft.(t) + A11111 (t) + fl11(t)A 1 + (b 2 /r)Iln (t)2 = Q_, a.e. t E (0, T),

10 (3.8) 11. (0)

with 111 (t) nonnegative and seif-adjoint, satisfies urn 1Ifl 1 (t)Pn - flo(t)jHS(HI") =0

uniformly in t for t E [0, T].

Since the basis is not orthonormal, simply replacing the operators in (5.7).

(3.8) with their matrix representations will not lead to the familiar symmetric matrix

Riccati differential equation. For a linear operator L11 with domain and/or range in H11.

we denote its matrix representation with respect to the basis { 1 1}j.)'' by L,. Define

Dn:[0. 11 --+ Rn-' by (Dn(J) = (,(?7). ,fl ( 1 ))T and set MN =(<D", (p)=

I 4n(r1 )'In (z)T d1 . Then AN = "- 1 (aD-I,,,D p), GN = 2(~l and QN =

00

flN is the solution to the initial value problem

flNMt + ANFIN(t) + HINMtAN +(b 2 /r) hN(t)M7'N~t M tN tE(0. T)

fly(O) = O

25



with HN(t) nonnegative and self-adjoint. The approximating solution to the optimal con-

trol problem then takes the form

1

i( =).(T - t; q, )x(t, )d , a.e. (t, i) e (0, T) x (0,1)
r J

0

where 7r, f C(O, T; L2 ((O, 1) x (0, 1))) is given by

7r .(t 7, ) = ,p(1)TMNI fN(t)MA4N( ),

for t E [0, TI, (77, ) E [0, 1] x [0, 1]. Our convergence theory yields lim 7r,, = 70 in L2((0, 1) x
l "-oo

(0, 1)) uniformly in t for t f [0, T]. That is
1 1

lim sup f f n(t; 7), 7)-ro(t; 77, )I12 did = 0.

0 0

We note that some interesting open questions which are related to our effort here

remain. For example, a Hilbert-Schmidt existence, approximation, and convergence theory

for the case in which the operator A (and therefore the operator A0 ) is time varying. The

standard existence and approximation results in the spirit of Theorem 2.1-2.3 for nonlinear

systems involving time dependent operators are typically too restrictive to be of any use

in the Hilbert space framework in which the problem would be formulated. An approach

such as the one which was taken in [2] in the context of approximation methods for inverse

problems for nonautonomous nonlinear distributed systems which was based upon Barbu's

[3] Theorem III. 4.2 may be more appropriate.

Finally a Hilbert-Schmidt approximation theory for the steady state, or algebraic

operator Riccati equation can also be developed (see [12]). (The algebraic Riccati equation

arises in the context of the linear-quadratic optimal control problem on the infinite time

interval).
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